If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-119.34x+28.72=0
a = 1; b = -119.34; c = +28.72;
Δ = b2-4ac
Δ = -119.342-4·1·28.72
Δ = 14127.1556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-119.34)-\sqrt{14127.1556}}{2*1}=\frac{119.34-\sqrt{14127.1556}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-119.34)+\sqrt{14127.1556}}{2*1}=\frac{119.34+\sqrt{14127.1556}}{2} $
| x+12=6x-8=180 | | 28p-16p-9=843 | | 4x^2+7x-15=-10 | | 3x-9x=2(1-3x)-1 | | 5(3-x)+7x=3x+15+2x | | (4w-8)=90 | | 16-4t=5t | | 2(x+4)+x+10=180 | | 17x+12=47 | | x=1235 | | 4x-x=1235 | | 4x=1235 | | 35-17=6j-3j | | y+83=100 | | 0.1x^2+2.4x+25=430 | | X=(3x+137) | | 22/7*r^2=616 | | 66+x=67 | | 1/2(2x-7+x-6)=x | | (x+5)+28=180 | | (3-7i)(2-5i)=0 | | -3(x+4)=7x-6+2(x-4) | | 3(6+2x=8(5x+6)-4x | | 11=d/2 | | 5=7n | | (2-x)(x-5)=(x+6)(x-4) | | -2v/3=14 | | (s(s-5)(s+5))/8=0 | | 25x/2x=256 | | 6(6x+6)-5=3x+2 | | (u^2-13u)/6=0 | | 5(w-2)-9=-4(-6w+6)-4w |